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Outline 

  Fundamentals 
  Software Solutions to Challenges 

  Sequential Programming Model 
  Shared Memory World 
  Message Passing World 

  Optimizing across an evolving hardware base 
  Automating Performance Tuning (auto-tuning) 
  Example 1: LBMHD 
  Example 2: SpMV 

  Summary 
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Performance Optimization: 
Contending Forces 

  Contending forces of Efficiency and Computational Complexity 
  We improve time to solution by improving throughput (efficiency) 

and reducing computational complexity 
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Improve 
Efficiency 

(Gflop/s, GB/s, etc…) 
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Computational 
Complexity 
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Performance Optimization: 
Contending Forces 

  Contending forces of Efficiency and Computational Complexity 
  We improve time to solution by improving throughput (efficiency) 

and reducing computational complexity 

  In practice, we’re willing to sacrifice one in order to improve the time 
to solution. 
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Basic Efficiency Quantities 

  At all levels of the system (register files through networks), there are 
Three Fundamental (efficiency-oriented) Quantities: 
  Latency   every operation requires time to execute 

    (i.e. instruction, memory or network latency) 
  Bandwidth  # of (parallel) operations completed per cycle 

    (i.e. #FPUs, DRAM, Network, etc…) 
  Concurrency  Total # of operations in flight 
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Little’s Law 

  Little’s Law relates these three: 
  Concurrency = Latency * Bandwidth 
   - or - 
  Effective Throughput = Expressed Concurrency / Latency 

  This concurrency must be filled with parallel operations 
  Can’t exceed peak throughput with superfluous concurrency. 

 (each channel has a maximum throughput) 
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Computational Complexity 
Quantities 

  Complexity often expressed in terms of  
  #Floating-point operations (FLOPs) 
  #Bytes from (registers, cache, DRAM, network) 

  Just as channels have throughput limits, kernels and algorithms can 
have lower bounds to complexity (traffic). 
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Architects, Mathematicians, 
Programmers 

  Architects invent paradigms to improve (peak) throughput (efficiency?) 
and facilitate(?) Little’s Law. 

  Mathematicians invent new algorithms to improve performance by 
reducing (bottleneck) complexity or traffic 

  As programmers, we must restructure algorithms and implementations 
to these new features. 

  Often boils down to several key challenges: 
  Management of data/task locality 
  Management of data dependencies 
  Management of communication 
  Management of variable and dynamic parallelism 
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Software Solutions to 
Challenges 
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Challenges: Sequential 

  Even with only one thread, there is parallelism due to pipelining and SIMD 

  Data Dependencies: 
  HW (despite any out of order execution) manages data dependencies from ILP   
  user/compiler manages those from DLP (SIMDize only if possible) 

  Data Locality: 
  compilers do a pretty good job of register file locality 
  For consumer apps, caches hide the complexity of attaining good on-chip locality fairly well 
  However, for performance-critical HPC apps, working sets can be so large and 

unpredictable, caches do poorly.  When coupled with finite memory bandwidth, performance 
can suffer. 

  cache block (reorder loops) or change data structures/types to improve arithmetic 
intensity. 

  Communication (limited to processor-DRAM): 
  modern architectures predominately used HW stream prefetching to hide latency. 

  structure memory access patterns into N unit stride streams 
  Variable/Dynamic Parallelism: 

  OOO processors can mitigate the complexity of variable parallelism (ILP/DLP) within the 
instruction set so long as it occur within a ~few dozen instruction window 
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Arithmetic Intensity 

  True Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes 

  Some HPC kernels have an arithmetic intensity that scales with problem 
size (increased temporal locality), but remains constant on others 

  Arithmetic intensity is ultimately limited by compulsory traffic 
  Arithmetic intensity is diminished by conflict or capacity misses. 

A r i t h m e t i c  I n t e n s i t y 

O( N ) 
O( log(N) ) 

O( 1 ) 

SpMV, BLAS1,2 

Stencils (PDEs) 

Lattice Methods 

FFTs 
Dense Linear Algebra 

(BLAS3) 
Particle Methods 
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Roofline Model 
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  Visualizes how bandwidth, 
compute, locality, and 
optimization bound 
performance. 

  Based on application 
characteristics, one can 
infer what needs to be done 
to improve performance. 
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Challenges: Shared Memory 

  Multiples threads in a shared memory environment 

  Data Dependencies: 
  no inherent support for managing data dependencies.   

  Bulk Synchronous (barriers), locks/semaphores, atomics 
  Data Locality: 

  Must manage NUMA and NUCA as well as on-/off-chip locality 
  Use Linux affinity routines (parallelize accordingly),  
 cache block (reorder loops), or change data structures/types. 

  Communication: 
  Message aggregation, concurrency, throttling etc… 
  Ideally, HW/SW (cache coherency/GASNet) runtime should manage this: 

" Use collectives and/or memory copies in UPC 
  Variable/Dynamic Parallelism 

  variable TLP is a huge challenge 
" Task queues (?) 
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Challenges: Message Passing 

  Multiples Processes in a message passing environment 

  Data Dependencies: 
  no inherent support for managing data dependencies.   
  user must express all data dependencies via send/recv/wait 

  Data Locality: 
  No shared memory, so all communication is via MPI 

  User manages partitioning/replication of data at process level 
  Communication: 

  Message aggregation, concurrency throttling etc… 
  ideally, MPI should manage this 

" Use collectives, larger messages, limit the number of send/recv’s at a time. 
  Variable/Dynamic Parallelism 

  no good solution for variable TLP 
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Coping with Diversity of Hardware 

  There are dozens of processor and machine architectures in use 
today. 

  The best implementation of an algorithm is dependent on: 
  machine 
  data set 
  concurrency 
  machine load 
  … 

  Hand optimizing each architecture/dataset combination is not 
feasible 
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Auto-tuning 

  Automatic Performance Tuning (Auto-tuning) is an empirical 
feedback driven technique designed to automate performance 
engineering. 

  Our auto-tuning approach finds a good performance solution by a 
combination of heuristics and exhaustive search 
  Perl script generates many possible kernels 
  (Generate SIMD optimized kernels) 
  Auto-tuning benchmark examines kernels and reports back with the 

best one for the current architecture/dataset/compiler/… 
  Performance depends on the optimizations generated 
  Heuristics are often desirable when the search space isn’t tractable 

  Proven value in Dense Linear Algebra(ATLAS), Spectral
(FFTW,SPIRAL), and Sparse Methods(OSKI) 

18 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 19 

Auto-tuning 

  Provides performance portability across the existing breadth and 
evolution of microprocessors 

  One time up front productivity cost is amortized by the number of 
machines its used on 

  Auto-tuning does not invent new optimizations 
  Auto-tuning automates the code generation and exploration of 

the optimization and parameter space 
  Two components: 

  parameterized code generator (we wrote ours in Perl)  
  Auto-tuning exploration benchmark 

 (combination of heuristics and exhaustive search) 
  Can be extended with ISA specific optimizations (e.g. DMA, SIMD) 
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  Over the last 15 years, the set of optimizations available to auto-
tuning has grown immensely. 

Algorithmic Parameters 
FMM, KSM/Akx, MG V-cycle, … 

Advancing the State of the Art in 
Optimizations 

Parallelism 
GTC, LBMHD, Stencils,  
PLASMA/MAGMA, etc… 
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Data Structure 
Transformations 

OSKI, GTC, … 

Loop/Code 
Transformations 
ATLAS, FFTW, SPIRAL, 

etc…  
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Lattice Boltzmann 
Magnetohydrodynamics 

(LBMHD) 
Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Extracting 
Ultra-Scale Lattice Boltzmann Performance via Hierarchical and Distributed Auto-Tuning", 
Supercomputing (SC), 2011. 

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Lattice 
Boltzmann Simulation Optimization on Leading Multicore Platforms", International Parallel & 
Distributed Processing Symposium (IPDPS), 2008. Best Paper, Applications Track  
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LBMHD 

  Lattice Boltzmann Magnetohydrodynamics (CFD+Maxwell’s Equations) 
  Plasma turbulence simulation via Lattice Boltzmann Method for simulating 

astrophysical phenomena and fusion devices 
  Three macroscopic quantities: 

  Density 
  Momentum (vector) 
  Magnetic Field (vector) 

  Two distributions: 
  momentum distribution (27 scalar components) 
  magnetic distribution (15 Cartesian vector components) 

momentum distribution 
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LBMHD 

  Code Structure 
  time evolution through a series of collision( ) and stream( ) functions 

  stream( ) 
  performs a ghost zone exchange of data to facilitate distributed memory 

implementations as well as boundary conditions 
  should constitute 10% of the runtime 

  collision( )’s Arithmetic Intensity: 
  Must read 73 doubles, and update 79 doubles per lattice update (1216 bytes) 
  Requires about 1300 floating point operations per lattice update 
  Just over 1.0 flops/byte (ideal architecture) 
  Suggests LBMHD is memory-bound on the Cray XT4/XE6. 

  Structure-of-arrays layout (component’s are separated) ensures that cache 
capacity requirements are independent of problem size 

  However, TLB capacity requirement increases to >150 entries 

  periodic boundary conditions 
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LBMHD Stencil 

  Simplified example reading from 9 arrays and writing to 9 arrays 
  Actual LBMHD reads 73, writes 79 arrays 

24 

x dimension

(b)(a)

write_array[ ][ ]

(+1,0)
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(0,-1)
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Auto-tuning LBMHD 
on Multicore SMPs 

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Lattice 
Boltzmann Simulation Optimization on Leading Multicore Platforms", International Parallel & 
Distributed Processing Symposium (IPDPS), 2008.  
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LBMHD Performance 
(reference implementation) 

  Generally, scalability looks 
good 

  Scalability is good 
  but is performance good? 

*collision() only  

Reference+NUMA 
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Lattice-Aware Padding 

  For a given lattice update, the requisite velocities can be mapped to 
a relatively narrow range of cache sets (lines). 

  As one streams through the grid, one cannot fully exploit the 
capacity of the cache as conflict misses evict entire lines. 

  In an structure-of-arrays format, pad each component such that 
when referenced with the relevant offsets (±x,±y,±z) they are 
uniformly distributed throughout the sets of the cache 

  Maximizes cache utilization and minimizes conflict misses. 
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LBMHD Performance 
(lattice-aware array padding) 

28 

  LBMHD touches >150 
arrays. 

  Most caches have limited 
associativity 

  Conflict misses are likely 
  Apply heuristic to pad 

arrays 

+Padding 

Reference+NUMA 
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(a)

(d)

(c)

Vectorization 

  Two phases with a lattice method’s collision() operator: 
  reconstruction of macroscopic variables 
  updating discretized velocities 

  Normally this is done one point at a time. 
  Change to do a vector’s worth at a time (loop interchange + tuning) 
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LBMHD Performance 
(architecture specific optimizations) 

  Add unrolling and reordering of 
inner loop 

  Additionally, it exploits SIMD 
where the compiler doesn’t 

  Include a SPE/Local Store 
optimized version 

*collision() only  

+Explicit SIMDization 

+SW Prefetching 

+Unrolling 

+Vectorization 

+Padding 

Reference+NUMA 

+small pages 
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LBMHD Performance 
(architecture specific optimizations) 

  Add unrolling and reordering of 
inner loop 

  Additionally, it exploits SIMD 
where the compiler doesn’t 

  Include a SPE/Local Store 
optimized version 

*collision() only  

+Explicit SIMDization 

+SW Prefetching 

+Unrolling 

+Vectorization 

+Padding 

Reference+NUMA 

+small pages 

1.6x 4x 

3x 130x 
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Limitations 

  Ignored MPP (distributed) world 
  Kept problem size fixed and cubical 
  When run with only 1 process per SMP, maximizing threads per 

process always looked best 
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Auto-tuning LBMHD 
on Multicore MPPs 

Samuel Williams, Jonathan Carter, Leonid Oliker, John Shalf, Katherine Yelick, "Extracting Ultra-
Scale Lattice Boltzmann Performance via Hierarchical and Distributed Auto-Tuning", 
Supercomputing (SC), 2011. 
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MPI+Pthreads and MPI+OpenMP 
Implementations 

Explored performance on 3 ultrascale machines using 2048 nodes on each and 
running a 1GB, 4GB, and if possible 16GB(per node) problem size. 

• IBM Blue Gene/P at Argonne (Intrepid)  8,192 cores 
• Cray XT4 at NERSC (Franklin)   8,192 cores 
• Cray XE6 at NERSC (Hopper)   49,152 cores 
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Flat MPI 

  In the flat MPI world, there is one 
process per core, and only one thread 
per process 

  All communication is through MPI 
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Hybrid MPI + Pthreads/OpenMP 

  As multicore processors already provide cache 
coherency for free, we can exploit it to reduce 
MPI overhead and traffic. 

  We examine using pthreads and OpenMP for 
threading (other possibilities exist) 

  For correctness in pthreads, we are required to 
include a intra-process (thread) barrier between 
function calls for correctness.   
 (we wrote our own) 

  Implicitly, OpenMP will barrier via the #pragma 

  We can choose any balance between processes/
node and threads/process 

  In both Pthreads and OpenMP, only thread 0 
performs MPI calls 

36 

collision() collision() collision() collision()

pack() pack() pack() pack()

unpack() unpack() unpack() unpack()

MPI()

pack() pack() pack() pack()

pack() pack() pack() pack()

MPI()

MPI()

unpack() unpack() unpack() unpack()

unpack() unpack() unpack() unpack()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

barrier()

process 0
thread 0 thread 1 thread 2 thread 3
(core 0) (core 1) (core 2) (core 3)



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

The Distributed 
Auto-tuning Problem 

  We believe that even for relatively large problems, auto-tuning only  
the local computation (e.g. IPDPS’08) will deliver sub-optimal MPI 
performance. 

  Want to explore MPI/Hybrid decomposition as well 
  We have a combinatoric explosion in the search space coupled with 

a large problem size (number of nodes) 

  To remedy this, we employ a greedy search approach that 
  determines the best single core implementation (on a single node) ~ 

IPDPS work 
  explores the best parallel MPI decomposition among nodes and the 

best on-node programming model (8-64 nodes) 
  Evaluates performance at scale (2048 nodes = 49,152 cores) 
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Stage 2 

38 

  In stage 2, we prune the MPI space. 
  Given a fixed memory footprint per node, explore the different ways 

of partitioning it among processes and threads. 
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Stage 2 

  Hybrid Auto-tuning requires we mimic the SPMD 
environment 

  Suppose we wish to explore this color-coded 
optimization space. 

  In the serial world (or fully threaded nodes),  
 the tuning is easily run 

  However, in the MPI or hybrid world a problem 
arises as processes are not guaranteed to be 
synchronized. 

  As such, one process may execute some 
optimizations faster than others simply due to 
fortuitous scheduling with another processes’ trials 

  Solution: add an MPI_barrier() around each trial 
 (a configuration with 100’s of iterations) 
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Results 
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Performance Results 
(using 2048 nodes on each machine) 

  We present the best data for 
progressively more aggressive auto-
tuning efforts 

  Remember, Hopper has 6x as many 
cores per node as Intrepid or Franklin.  
So performance per node is far greater. 

  auto-tuning can improve performance 
  ISA-specific optimizations (e.g. SIMD 

intrinsics) help more 
  Overall, we see speedups of up to 3.4x 

  As problem size increased, so to does 
performance.  However, the value of 
threading is diminished. 
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Performance Results 
(using 2048 nodes on each machine) 

  We present the best data for 
progressively more aggressive auto-
tuning efforts 

  Remember, Hopper has 6x as many 
cores per node as Intrepid or Franklin.  
So performance per node is far greater. 

  auto-tuning can improve performance 
  ISA-specific optimizations (e.g. SIMD 

intrinsics) help more 
  As problem size increased, so to does 

performance.  However, the value of 
threading is diminished. 

  For small problems, MPI time can 
dominate runtime on Hopper 

  Threading mitigates this 
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Performance Results 
(using 2048 nodes on each machine) 

  We present the best data for 
progressively more aggressive auto-
tuning efforts 

  Remember, Hopper has 6x as many 
cores per node as Intrepid or Franklin.  
So performance per node is far greater. 

  auto-tuning can improve performance 
  ISA-specific optimizations (e.g. SIMD 

intrinsics) help more 
  As problem size increased, so to does 

performance.  However, the value of 
threading is diminished. 

  For large problems, MPI time 
remains a small fraction of overall 
time 
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Energy Results 
(using 2048 nodes on each machine) 

  Ultimately, energy is becoming the 
great equalizer among machines. 

  Hoper has 6x the cores, but burns 
15x the power of Intrepid.   

  To visualize this, we explore 
energy efficiency (Mflop/s per Watt) 

  Clearly, despite the performance 
differences, energy efficiency is 
remarkably similar. 
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Sparse Matrix Vector Multiplication 
(SpMV) 
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Auto-tuning Sparse Matrix-
Vector Multiplication (SpMV) 

Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, 
James Demmel, "Optimization of Sparse Matrix-Vector Multiplication on Emerging 
Multicore Platforms", Supercomputing (SC), 2007.  
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Sparse Matrix 
Vector Multiplication 

  What’s a Sparse Matrix ? 
  Most entries are 0.0 
  Performance advantage in only storing/operating on the nonzeros 
  Requires significant meta data to record the matrix structure 

  What’s SpMV ? 
  Evaluate y=Ax 
  A is a sparse matrix, x & y are dense vectors 

  Challenges 
  Very memory-intensive (often <0.166 flops/byte) 
  Difficult to exploit ILP (bad for pipelined or superscalar), 
  Difficult to exploit DLP (bad for SIMD) 

(a) 
algebra conceptualization 

(c) 
CSR reference code 

for (r=0; r<A.rows; r++) { 
  double y0 = 0.0; 
  for (i=A.rowStart[r]; i<A.rowStart[r+1]; i++){ 

    y0 += A.val[i] * x[A.col[i]]; 
  } 
  y[r] = y0; 
} 

A x y 

(b) 
CSR data structure 

A.val[ ] 

A.rowStart[ ] 

... 

... 

A.col[ ] 
... 
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The Dataset (matrices) 

  Unlike DGEMV, performance is dictated by sparsity  
  Suite of 14 matrices 
  All bigger than the caches of our SMPs 
  We’ll also include a median performance number 

Dense 

Protein FEM / 
Spheres 

FEM / 
Cantilever 

Wind 
Tunnel 

FEM / 
Harbor QCD FEM / 

Ship Economics Epidemiology 

FEM / 
Accelerator Circuit webbase 

LP 

2K x 2K Dense matrix 
stored in sparse format 

Well Structured 
(sorted by nonzeros/row) 

Poorly Structured 
hodgepodge 

Extreme Aspect Ratio 
(linear programming) 
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SpMV Parallelization 

  How do we parallelize a matrix-vector multiplication ? 

49 
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SpMV Parallelization 

  How do we parallelize a matrix-vector multiplication ? 
  We could parallelize by columns (sparse matrix time dense sub vector) 

and in the worst case simplify the random access challenge but:  
  each thread would need to store a temporary partial sum 
  and we would need to perform a reduction (inter-thread data dependency)  

50 
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SpMV Parallelization 

  How do we parallelize a matrix-vector multiplication ? 
  We could parallelize by columns (sparse matrix time dense sub vector) 

and in the worst case simplify the random access challenge but:  
  each thread would need to store a temporary partial sum 
  and we would need to perform a reduction (inter-thread data dependency)  

51 

thread 0 thread 1 thread 2 thread 3 
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SpMV Parallelization 

  How do we parallelize a matrix-vector multiplication ? 
  Alternately, we could parallelize by rows. 
  Clearly, there are now no inter-thread data dependencies, but, in the 

worst case, one must still deal with challenging random access 

52 

th
re

ad
 0

 
th

re
ad

 1
 

th
re

ad
 2

 
th

re
ad

 3
 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 53 

SpMV Performance 
(simple parallelization) 

  Out-of-the box SpMV 
performance on a suite of 
14 matrices 

  Simplest solution = 
parallelization by rows 
(solves data dependency 
challenge) 

  Scalability isn’t great 
  Is this performance 

good? 

Naïve Pthreads 

Naïve 
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NUMA 
(Data Locality for Matrices) 

  On NUMA architectures, all large arrays should be partitioned either 
  explicitly (multiple malloc()’s + affinity)  
  implicitly (parallelize initialization and rely on first touch) 

  You cannot partition on granularities less than the page size 
  512 elements on x86 
  2M elements on Niagara 

  For SpMV, partition the matrix and 
 perform multiple malloc()’s 

  Pin submatrices so they are 
 co-located with the cores tasked 
 to process them 
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NUMA 
(Data Locality for Matrices) 
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Prefetch for SpMV 

  SW prefetch injects more MLP into the 
memory subsystem. 

  (attempts to supplement HW 
prefetchers in their attempt to satisfy 
Little’s Law) 

  Can try to prefetch the 
  values 
  indices 
  source vector 
  or any combination thereof 

  In general, should only insert one 
prefetch per cache line (works best on 
unrolled code)  

56 

for(all rows){ 

  y0 = 0.0; 

  y1 = 0.0; 

  y2 = 0.0; 

  y3 = 0.0; 

  for(all tiles in this row){ 

    PREFETCH(V+i+PFDistance); 

    y0+=V[i  ]*X[C[i]] 

    y1+=V[i+1]*X[C[i]] 

    y2+=V[i+2]*X[C[i]] 

    y3+=V[i+3]*X[C[i]] 

  } 

  y[r+0] = y0; 

  y[r+1] = y1; 

  y[r+2] = y2; 

  y[r+3] = y3; 

} 
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SpMV Performance 
(NUMA and Software Prefetching) 

57 

  NUMA-aware allocation is 
essential on memory-
bound NUMA SMPs. 

  Explicit software 
prefetching can boost 
bandwidth and change 
cache replacement 
policies 

  Cell PPEs are likely 
latency-limited. 

  used exhaustive search 
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ILP/DLP vs Bandwidth 

  In the multicore era, which is the bigger issue? 
  a lack of ILP/DLP (a major advantage of BCSR) 
  insufficient memory bandwidth per core 

  There are many architectures that when running low arithmetic 
intensity kernels, there is so little available memory bandwidth per 
core that you won’t notice a complete lack of ILP 

  Perhaps we should concentrate on minimizing memory traffic 
rather than maximizing ILP/DLP 

  Rather than benchmarking every combination, just  
 Select the register blocking that minimizes the matrix foot print. 
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Matrix Compression Strategies 

  Register blocking creates small dense tiles 
  better ILP/DLP 
  reduced overhead per nonzero 

  Let each thread select a unique register blocking 
  In this work,  

  we only considered power-of-two register blocks 
  select the register blocking that minimizes memory traffic 

59 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 0.0

0.0 0.0

0.0 0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

0.0

0.0

0.0

0.0

0.0

0.0

0.0

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

A00

A10A11

A22

A32A33

A44

A55

A66

A77

A54

A66

A24

A02

A46

1x1 1x2 2x22x1

(a) (b) (c) (d)

Matrix Compression Strategies 

  Where possible we may encode indices with less than 32 bits 
  We may also select different matrix formats 

  In this work,  
  we considered 16-bit and 32-bit indices (relative to thread’s start) 
  we explored BCSR/BCOO (GCSR in book chapter) 
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SpMV Performance 
(Matrix Compression) 

61 

  After maximizing memory 
bandwidth, the only hope 
is to minimize memory 
traffic. 

  exploit: 

  register blocking 
  other formats 
  smaller indices 

  Use a traffic minimization 
heuristic rather than 
search 

  Benefit is clearly 
 matrix-dependent. 

  Register blocking enables 
efficient software 
prefetching (one per 
cache line) 
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Cache blocking for SpMV 
(Data Locality for Vectors) 

  Cache-blocking sparse matrices is very different than cache-
blocking dense matrices. 

  Rather than changing loop bounds, store entire submatrices 
contiguously.   

  The columns spanned by each cache 
 block are selected so that all submatrices 
 place the same pressure on the cache 

 i.e. touch the same number of unique 
 source vector cache lines 

  TLB blocking is a similar concept but 
 instead of on 8 byte granularities,  
 it uses 4KB granularities 
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Cache blocking for SpMV 
(Data Locality for Vectors) 

  Cache-blocking sparse matrices is very different than cache-
blocking dense matrices. 

  Rather than changing loop bounds, store entire submatrices 
contiguously.   

  The columns spanned by each cache 
 block are selected so that all submatrices 
 place the same pressure on the cache 

 i.e. touch the same number of unique 
 source vector cache lines 

  TLB blocking is a similar concept but 
 instead of on 64 byte granularities,  
 it uses 4KB granularities 

63 

th
re

ad
 0

 
th

re
ad

 1
 

th
re

ad
 2

 
th

re
ad

 3
 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 64 

Auto-tuned SpMV Performance 
(cache and TLB blocking) 

  Fully auto-tuned SpMV 
performance across the suite 
of matrices 

  Why do some optimizations 
work better on some 
architectures? 

  matrices with naturally small 
working sets 

  architectures with giant 
caches 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 
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Auto-tuned SpMV Performance 
(architecture specific optimizations) 

  Fully auto-tuned SpMV 
performance across the suite 
of matrices 

  Included SPE/local store 
optimized version 

  Why do some optimizations 
work better on some 
architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 
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Auto-tuned SpMV Performance 
(max speedup) 

  Fully auto-tuned SpMV 
performance across the suite 
of matrices 

  Included SPE/local store 
optimized version 

  Why do some optimizations 
work better on some 
architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

2.7x 4.0x 

2.9x 35x 
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Summary 
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Summary 

  There is a continual struggle between computer architects, 
mathematicians, and computer scientists. 
  architects will increase peak performance 
  architects may attempt to facilitate satisfying Little’s Law 
  mathematicians create new, more efficient algorithms 

  In order to minimize time to solution, we often must simultaneously 
satisfy Little’s Law and minimize computation/communication. 
  Even if we satisfy little’s Law, applications may be severely bottlenecked 

by computation/communication 

  Perennially, we must manage: 
  data/task locality 
  data dependencies 
  communication 
  variable and dynamic parallelism 
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Summary (2) 

  When optimizing code, the ideal solution for one machine is often 
found to be deficient on another. 

  To that end, we are faced with the prospect of optimizing key 
computations for every architecture-input combination. 

  Automatic Performance Tuning (auto-tuning) has been shown to 
mitigate these challenges by parameterizing some of the 
optimizations. 

  Unfortunately, the more diverse the architectures the more we must 
rely on radically different implementations and algorithms to improve 
time to solution. 
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BACKUP SLIDES 
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Evolution of  
Computer Architecture 

and Little’s Law 
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Yesterday’s Constraint: 
Instruction Latency & Parallelism 
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Single-issue, non-pipelined 

  Consider a single issue, non-
pipelined processor 

  Little’s Law 
  Bandwidth = issue width = 1 
  Latency = 1 
  Concurrency = 1 

  Very easy to get good 
performance even if all 
instructions are dependent 
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Pipelined 

  By pipelining, we can increase the 
processor frequency. 

  However, we must ensure the 
pipeline remains filled to achieve 
better performance. 

  Little’s Law 
  Bandwidth = issue width = 1 
  Latency = 3 
  Concurrency = 3 

  Performance may drop to 1/3 of 
peak 
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Pipelined 
(w/unrolling, reordering) 

  There may be inherent and 
untapped parallelism in the 
code 

  Compilers/programmers must 
find parallelism, and unroll/
reorder the code to keep the 
pipeline full  
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Out-of-order 

  Alternately, the hardware can 
try to find instruction level 
parallelism (ILP) 

  Instructions are: 
  Queued up 
  Executed out-of-order 
  Reordered 
  Committed in-order 

  Useful when parallelism or 
latency cannot be determined 
at compile time. 
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Superscalar 

  Increase throughput, by 
executing multiple instructions 
in parallel 

  Usually separate pipelines for 
different instruction types: 
 FP, integer, memory 

  Significantly complicates 
 out-of-order execution 
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Instruction-Level Parallelism 

  On modern pipelined architectures, operations (like floating-point 
addition) have a latency of 4-6 cycles (until the result is ready).   

  However, independent adds can be pipelined one after another. 
  Although this increases the peak flop rate,  

  one can only achieve peak flops on the condition that on any given 
cycle the program has >4 independent adds ready to execute. 

  failing to do so will result in a >4x drop in performance. 
  The problem is exacerbated by superscalar or VLIW architectures 

like POWER or Itanium. 

  One must often reorganize kernels to express more instruction-
level parallelism   
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1x1 Register Block 

ILP Example (1x1 BCSR) 

for(all rows){ 

  y0 = 0.0; 

  for(all tiles in this row){ 

    y0+=V[i]*X[C[i]] 

  } 

  y[r] = y0; 

} 

  Consider the core of SpMV 
  No ILP in the inner loop 
  OOO can’t accelerate serial FMAs 
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ILP Example (1x4 BCSR) 

for(all rows){ 

  y0 = 0.0; 

  for(all tiles in this row){ 

    y0+=V[i  ]*X[C[i]  ] 

    y0+=V[i+1]*X[C[i]+1] 

    y0+=V[i+2]*X[C[i]+2] 

    y0+=V[i+3]*X[C[i]+3] 

  } 

  y[r] = y0; 

} 

  What about 1x4 BCSR ? 
  Still no ILP in the inner loop 
  FMAs are still dependent on each other 
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ILP Example (4x1 BCSR) 

for(all rows){ 

  y0 = 0.0;y1 = 0.0; 

  y2 = 0.0;y3 = 0.0; 

  for(all tiles in this row){ 

    y0+=V[i  ]*X[C[i]] 

    y1+=V[i+1]*X[C[i]] 

    y2+=V[i+2]*X[C[i]] 

    y3+=V[i+3]*X[C[i]] 

  } 

  y[r+0] = y0; y[r+1] = y1; 

  y[r+2] = y2; y[r+3] = y3; 

} 

  What about 4x1 BCSR ? 
  Updating 4 different rows 
  The 4 FMAs are independent 
  Thus they can be pipelined. 
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SIMD 

  Many codes perform the same operations on different pieces of data 
 (Data level parallelism = DLP) 

  SIMD : Single Instruction Multiple Data 

  Register sizes are increased. 
  Instead of each register being a 64b FP #,  

 each register holds 2 or 4 FP#’s 

  Much more efficient solution than superscalar on data parallel 
codes 
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Data-level Parallelism 

  DLP = apply the same operation to multiple independent operands. 

  Today, rather than relying on superscalar issue, many architectures have 
adopted SIMD as an efficient means of boosting peak performance.  (SSE, 
Double Hummer, AltiVec, Cell, GPUs, etc…) 

  Typically these instructions operate on four single precision 
 (or two double precision) numbers at a time.   

  However, some are more GPUs(32), Larrabee(16), and AVX(8) 
  Failing to use these instructions may cause a 2-32x drop in 

performance 
  Unfortunately, most compilers utterly fail to generate these 

instructions. 
84 
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Memory-Level Parallelism (1) 

  Although caches may filter many memory requests, in HPC many 
memory references will still go all the way to DRAM. 

  Memory latency (as measured in core cycles) grew by an order of 
magnitude in the 90’s 

  Today, the latency of a memory operation can exceed 200 
cycles (1 double every 80ns is unacceptably slow). 

  Like ILP, we wish to pipeline requests to DRAM 
  Several solutions exist today 

  HW stream prefetchers 
  HW Multithreading (e.g. hyperthreading) 
  SW line prefetch 
  DMA 
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Memory-Level Parallelism (2) 

  HW stream prefetchers are by far the easiest to implement and 
exploit. 

  They detect a series of consecutive cache misses and speculate 
that the next addresses in the series will be needed.  They then 
prefetch that data into the cache or a dedicated buffer. 

  To effectively exploit a HW prefetcher, ensure your array references 
accesses 100’s of consecutive addresses. 

  e.g. read A[i]…A[i+255] without any jumps or discontinuities 

  This force limits the effectiveness (shape) of the cache blocking you 
implemented in HW1 as you accessed: 
  A[(j+0)*N+i]…A[(j+0)*N+i+B], jump 

  A[(j+1)*N+i]…A[(j+1)*N+i+B], jump 

  A[(j+2)*N+i]…A[(j+2)*N+i+B], jump 

  … 
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Multithreaded 

  Superscalars fail when there is no ILP or DLP 
  However, there are many codes with 

 thread-level parallelism (TLP) 
  Consider architectures that are virtualized to appear as N cores. 
  In reality, there is one core maintaining multiple contexts and 

dynamically switching between them 
  There are 3 main types of multithread architectures: 

  Coarse-grained multithreading (CGMT) 
  Fine-grained multithreading (FGMT) , aka Vertical Multithreading 
  Simultaneous multithreading (SMT) 
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Coarse-grained Multithreading 

  Maintain multiple contexts 
  On a long latency instruction: 

  dispatch instruction 
  Switch to a ready thread 
  Hide latency with multiple 

ready threads 
  Eventually switch back to 

original 

88 

In flight 

completed 

Ready instructions 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

Fine-grained Multithreading 

  Maintain multiple contexts 
  On every cycle choose a ready 

thread 
  May now satisfy Little’s Law 

through multithreading: 
 threads ~ latency * bandwidth 
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Simultaneous Multithreading 

  Maintain multiple contexts 
  On every cycle choose as 

many ready instructions from 
the thread pool as possible 

  Can be applied to both in-order 
and out-of-order architectures 
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Today’s Constraint: 
The Memory Wall 

91 
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Abstract Machine Model 
(as seen in programming model) 

  In the abstract, processor architectures appear to have just 
memory, and functional units. 

  On early HPC machines, reading from memory required just one 
cycle. 

92 

DRAM 
float y[N];!

Cores 
z=0;!

z+=x[i]*y[i];!

i++;!

float x[N];!

int i;!float z;!
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Abstract Machine Model 
(as seen in programming model) 

  In the abstract, processor architectures appear to have just 
memory, and functional units. 

  On early HPC machines, reading from memory required just one 
cycle. 
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DRAM 
float y[N];!

Cores 
z=0;!

z+=x[i]*y[i];!

i++;!

float x[N];!

int i;!float z;!

  Unfortunately, as processors developed, DRAM latencies (in 
terms of core cycles) dramatically increased. 

  Eventually a small memory (the register file) was added so that 
one could hide this latency (by keeping data in the RF) 

  The programming model and compiler evolved to hide the fact 
the management of data locality in the RF. 

Register Files 

  Unfortunately, today, latency to DRAM can be 1000x that to the 
register file.   

  As the RF is too small for today’s problems, architects inserted 
another memory (cache) between the register file and the DRAM. 

  Data is transparently copied into the cache for future reference. 
  This memory is entirely invisible to the programmer and the 

compiler, but still has latency 10x higher than the register file. 

Cache 
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Abstract Machine Model 
(as seen in programming model) 

  Not only are the differences in latencies substantial, 
so to are the bandwidths 

  Once a link has been saturated (Little’s law is 
satisfied), it acts as a bottleneck against increased 
performance. 

  The only solution is to reduce the volume of traffic 
across that link 

94 

DRAM 
float y[N];!

Cores 
z=0;!

z+=x[i]*y[i];!

i++;!

float x[N];!

int i;!float z;!

Register Files 

Cache 

<50 GB/s 

<1000 GB/s 

<6000 GB/s 
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Impact on Little’s Law ? 

  Today, utilizing the full DRAM bandwidth and 
 minimizing memory traffic are paramount. 

  DRAM latency can exceed 1000 cpu cycles. 
  Impact on Little’s Law (200ns * 20GB/s):  

 4KB of data in flight 

  How did architects solve this? 
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out-of-order ? 

  Out-of-order machines can only scale to ~100 instructions in flight 
 of which only ~40 can be loads 

  This is ~10% of what Little’s Law requires 

  Out-of-order execution can now only hide cache latency, not DRAM 
latency 
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Software prefetch ? 

  A software prefetch is an instruction similar to a load 
  However, 

  It does not write to a register 
  Its execution is decoupled from the core 
  It is designed to bring data into the cache before it is needed 
  It must be scheduled by software early enough to hide DRAM latency 

  Limited applicability 
  work best on patterns for which many addresses are known well in advance. 
  must be inserted by hand with the distance tuned for  
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Hardware Stream Prefetchers ? 

  Hardware examines the cache miss pattern 
  Detects unit-stride (now strided) miss patterns, and begins to 

prefetch data before the next miss occurs. 

  Summary 
  Only works for simple memory access patterns 
  Can be tripped up if there are too many streams (>8) 
  Cannot prefetch beyond TLB page boundaries 
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Local Store + DMA 

  Create an on-chip memory(Local Store) disjoint from the cache/
TLB-heirarchy 

  Use DMA to transfer data from DRAM to local store 
  Basic operation: specify a long contiguous transfer (unit stride) 
  Can be extended to specifying a list of transfers (random access) 
  DMA is decoupled from execution (poll to check for completion) 

  Allows one to efficiently satisfy the concurrency from Little’s Law: 
  Concurrency = #DMAs * DMA length 

   #DMAs * DMA length   

   #DMAs * DMA length 

  Requires major software effort 
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Multithreading 

  Another approach to satisfying Little’s law 
  But more threads/core -> less cache(& associativity) per thread 

  Allow one cache miss per thread 
  #threads * 1 cacheline vs. Latency * Bandwidth 
  #threads = Latency*Bandwidth / cacheline ~ 64 

  64 threads/core is unrealistically high 
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Roofline Model 

101 
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Roofline Model 
Basic Concept 

102 

  Synthesize communication, computation, and locality into a single 
visually-intuitive performance figure using bound and bottleneck 
analysis. 

  where optimization i can be SIMDize, or unroll, or SW prefetch, … 
  Given a kernel’s arithmetic intensity (based on DRAM traffic after 

being filtered by the cache), programmers can inspect the figure, 
and bound performance. 

  Moreover, provides insights as to which optimizations will potentially 
be beneficial. 

Attainable 
Performanceij 

= min 
FLOP/s with Optimizations1-i 

AI * Bandwidth with Optimizations1-j 
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Roofline Model 
Basic Concept 

103 

  Plot on log-log scale 
  Given AI, we can easily 

bound performance 
  But architectures are much 

more complicated 

  We will bound performance 
as we eliminate specific 
forms of in-core parallelism 
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Roofline Model 
computational ceilings 

104 

  Opterons have dedicated 
multipliers and adders. 

  If the code is dominated by 
adds, then attainable 
performance is half of peak. 

  We call these Ceilings 
  They act like constraints on 

performance  
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Roofline Model 
computational ceilings 
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  Opterons have 128-bit 
datapaths. 

  If instructions aren’t 
SIMDized, attainable 
performance will be halved 
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Roofline Model 
computational ceilings 
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  On Opterons, floating-point 
instructions have a 4 cycle 
latency. 

  If we don’t express 4-way 
ILP, performance will drop 
by as much as 4x 
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Roofline Model 
communication ceilings 
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  We can perform a similar 
exercise taking away 
parallelism from the 
memory subsystem 
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Roofline Model 
communication ceilings 
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  Explicit software prefetch 
instructions are required to 
achieve peak bandwidth 
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Roofline Model 
communication ceilings 

109 

  Opterons are NUMA 
  As such memory traffic 

must be correctly balanced 
among the two sockets to 
achieve good Stream 
bandwidth. 

  We could continue this by 
examining strided or 
random memory access 
patterns 
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Roofline Model 
computation + communication ceilings 
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  We may bound 
performance based on the 
combination of expressed 
in-core parallelism and 
attained bandwidth. 
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Roofline Model 
locality walls 
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  Remember, memory traffic 
includes more than just 
compulsory misses. 

  As such, actual arithmetic 
intensity may be 
substantially lower. 

  Walls are unique to the 
architecture-kernel 
combination 
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Roofline Model 
locality walls 
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  Remember, memory traffic 
includes more than just 
compulsory misses. 

  As such, actual arithmetic 
intensity may be 
substantially lower. 

  Walls are unique to the 
architecture-kernel 
combination 
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Roofline Model 
locality walls 
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  Remember, memory traffic 
includes more than just 
compulsory misses. 

  As such, actual arithmetic 
intensity may be 
substantially lower. 

  Walls are unique to the 
architecture-kernel 
combination 
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Roofline Model 
locality walls 
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  Remember, memory traffic 
includes more than just 
compulsory misses. 

  As such, actual arithmetic 
intensity may be 
substantially lower. 

  Walls are unique to the 
architecture-kernel 
combination 
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Optimization Categorization 

Maximizing (attained) 
In-core Performance 

Minimizing (total) 
Memory Traffic 

Maximizing (attained) 
Memory Bandwidth 
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Optimization Categorization 

Minimizing 
Memory Traffic 

Maximizing 
Memory Bandwidth 

Maximizing 
In-core Performance 
• Exploit in-core parallelism 
   (ILP, DLP, etc…) 

• Good (enough) 
   floating-point balance 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 117 

Optimization Categorization 

Minimizing 
Memory Traffic 

Maximizing 
Memory Bandwidth 

Maximizing 
In-core Performance 
• Exploit in-core parallelism 
   (ILP, DLP, etc…) 

• Good (enough) 
   floating-point balance 

? 

? 

? 

? 
unroll & 

jam 
explicit 
SIMD 

reorder 
eliminate 
branches 
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? 
unroll & 

jam 
explicit 
SIMD 

reorder 
eliminate 
branches 

118 

Optimization Categorization 

Maximizing 
In-core Performance 

Minimizing 
Memory Traffic 

• Exploit in-core parallelism 
   (ILP, DLP, etc…) 

• Good (enough) 
   floating-point balance 

Maximizing 
Memory Bandwidth 
• Exploit NUMA 

• Hide memory latency 

• Satisfy Little’s Law 

? 
memory 
affinity ? 

SW 
prefetch 

? 
DMA 
lists 

? 
unit-stride 

streams 

? 
TLB 

blocking 
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Optimization Categorization 

Maximizing 
In-core Performance 

Maximizing 
Memory Bandwidth 

• Exploit in-core parallelism 
   (ILP, DLP, etc…) 

• Good (enough) 
   floating-point balance 

• Exploit NUMA 

• Hide memory latency 

• Satisfy Little’s Law 

Minimizing 
Memory Traffic 

Eliminate: 
• Capacity misses 
• Conflict misses 
• Compulsory misses 
• Write allocate behavior 

? 
? 

? ? 

cache 
blocking array 

padding 
compress 

data 

streaming 
stores 
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Optimization Categorization 

Maximizing 
In-core Performance 

Minimizing 
Memory Traffic 

Maximizing 
Memory Bandwidth 

• Exploit in-core parallelism 
   (ILP, DLP, etc…) 

• Good (enough) 
   floating-point balance 

• Exploit NUMA 

• Hide memory latency 

• Satisfy Little’s Law 

? 
memory 
affinity ? 

SW 
prefetch 

? 
DMA 
lists 

? 
unit-stride 

streams 

? 
TLB 

blocking 

Eliminate: 
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Roofline Model 
locality walls 
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  Optimizations remove 
these walls and ceilings 
which act to constrain 
performance. 
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Roofline Model 
locality walls 
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  Optimizations remove 
these walls and ceilings 
which act to constrain 
performance. 
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Roofline Model 
locality walls 
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  Optimizations remove 
these walls and ceilings 
which act to constrain 
performance. 
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Roofline Model 
locality walls 
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  Optimizations remove 
these walls and ceilings 
which act to constrain 
performance. 
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Optimization Categorization 

Maximizing 
In-core Performance 

Minimizing 
Memory Traffic 

Maximizing 
Memory Bandwidth 

• Exploit in-core parallelism 
   (ILP, DLP, etc…) 

• Good (enough) 
   floating-point balance 

• Exploit NUMA 

• Hide memory latency 

• Satisfy Little’s Law 

Eliminate: 
• Capacity misses 
• Conflict misses 
• Compulsory misses 
• Write allocate behavior Each optimization has 

a large parameter space 

What are the optimal parameters? 
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Auto-tuning? 

  Provides performance portability across the existing breadth and 
evolution of microprocessors 

  One time up front productivity cost is amortized by the number of 
machines its used on 

  Auto-tuning does not invent new optimizations 
  Auto-tuning automates the code generation and exploration of 

the optimization and parameter space 
  Two components: 

  parameterized code generator (we wrote ours in Perl)  
  Auto-tuning exploration benchmark 

 (combination of heuristics and exhaustive search) 
  Can be extended with ISA specific optimizations (e.g. DMA, SIMD) 
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Multicore: 
Architectures & Challenges 
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Options: 

  Moore’s law continues to double the transistors, what do we do with 
them ? 
  More out-of-order (prohibited by complexity, performance, power) 
  More threading (asymptotic performance) 
  More DLP/SIMD (limited applications, compilers?)  
  Bigger caches (doesn’t address compulsory misses, asymptotic perf.) 
  Place a SMP on a chip = ‘multicore’ 

128 
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What are SMPs? What is multicore ? 
What are multicore SMPs ? 

129 

  SMP = shared memory parallel 
  In the past, it meant multiple chips (typically < 32) could address any location in a 

large shared memory through a network or bus 

  Today, multiple cores are integrated on the same chip 
  Almost universally this is done in a SMP fashion 
  For “convince”, programming multicore SMPs is indistinguishable from programming 

multi-socket SMPs.  (easy transition) 

  Multiple cores can share: 
  memory controllers 
  caches 
  occasionally FPUs 

  Although there was a graceful transition from multiple sockets to multiple 
cores from the point of view of correctness, achieving good performance can 
be incredibly challenging.   
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Multicore & SMP Comparison 

  Advances in Moore’s Law allows for increased integration on-chip. 
  Nevertheless, the basic architecture and programming model 

remained the same: 
  Physically partitioned, logically shared caches and DRAM 
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NUMA vs NUCA 

  When physically partitioned, cache or memory access is non 
uniform (latency and bandwidth to memory/cache addresses varies) 

  UCA & UMA architecture: 
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NUMA vs NUCA 
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NUMA vs NUCA 

  When physically partitioned, cache or memory access is non 
uniform (latency and bandwidth to memory/cache addresses varies) 

  UCA & UMA architecture: 

134 

Core 

DRAM 

Cache 

Core Core Core 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

NUMA vs NUCA 

  When physically partitioned, cache or memory access is non 
uniform (latency and bandwidth to memory/cache addresses varies) 

  UCA & UMA architecture: 

135 

Core 

DRAM 

Cache 

Core Core Core 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

NUMA vs NUCA 
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NUMA vs NUCA 
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NUMA vs NUCA 

  When physically partitioned, cache or memory access is non 
uniform (latency and bandwidth to memory/cache addresses varies) 

  NUCA & NUMA architecture: 

142 

Core 

Cache 

Core Core Core 

Cache Cache Cache 

DRAM DRAM 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

NUMA vs NUCA 

  When physically partitioned, cache or memory access is non 
uniform (latency and bandwidth to memory/cache addresses varies) 

  NUCA & NUMA architecture: 

143 

Core 

Cache 

Core Core Core 

Cache Cache Cache 

DRAM DRAM 



F U T U R E   T E C H N O L O G I E S   G R O U P 

LAWRENCE BERKELEY NATIONAL LABORATORY 

NUMA vs NUCA 

  When physically partitioned, cache or memory access is non 
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NUMA vs NUCA 

  Proper cache locality 
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NUMA vs NUCA 

  Proper DRAM locality 
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Multicore and Little’s Law? 

  Like MT, for codes with enough TLP, multicore helps in satisfying 
Little’s Law 

  Combination of multicore and multithreading also works 

Concurrency per chip =  
 Concurrency per thread * threads per core * cores per chip =  

latency * bandwidth 
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Best Architecture? 

  Short answer: there’s not one 

  Architectures have diversified into different markets 
 (different balance between design options) 

  Architectures are constrained by a company’s manpower, money, 
target price, volume, as well as a new Power Wall 

  As a result, architectures are becoming simpler: 
  shallower pipelines (hard to increase frequency) 
  narrower superscalar or in-order 

  But there are  
  more cores (6 minimum) 
  more threads per core (2-4) 
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